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About the final exam
• The final will cover everything we have 

learned so far.

• Closed books, closed computers, and closed 
notes.

• A front-side cheat sheet is allowed

• The final grades will be curved

11/28/2016 2



Question type

• Possible types of questions:

– proofs

– General questions and answer

– Problems/computational questions

• The content covered by midterms I and II 
takes 60% 

• The content we studied after midterm II takes 
40%



Quick summary of previous content

• How to solve the recurrences

– Substitution method

– Tree method

– Master theorem 

• Comparison based sorting algorithms

– Merge sort, quick sort, and Heap sort

• Linear time sorting algorithms

– Counting sort, Bucket sort, and Radix sort
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Quick summary (cont’d)

• Basic heap operations: 

– Build-Max-Heap, Max-Heapify

• Order statistics

– How to find the k-th largest element : BigFive
algorithm

• Hash tables

– The definition and how it works

– Hash function h: Mapping from Universe U to the 
slots of a hash table T
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Binary Search Trees

• Binary Search Trees (BSTs) are an important 
data structure for dynamic sets

• In addition to satellite data, nodes have:

– key: an identifying field inducing a total ordering

– left: pointer to a left child (may be NULL)

– right: pointer to a right child (may be NULL)

– p: pointer to a parent node (NULL for root)
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Node implementation 
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Binary Search Trees

• BST property: Let x be a node in a binary search tree. 
If y is a node in the left subtree of x, then y.key < 
x.key. If y is a node in the right subtree of x, then 
y.key > x.key. Different BSTs can be constructed to 
represent the same set of data
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Walk on BST

• A: prints elements in sorted (increasing) order
InOrderTreeWalk(x)

InOrderTreeWalk(x.left);

print(x);

InOrderTreeWalk(x.right);

• This is called an inorder tree walk

– Preorder tree walk: print root, then left, then right

– Postorder tree walk: print left, then right, then 
root

9



Operations on BSTs: Search

• Given a key and a pointer to a node, returns 
an element with that key or NULL: 
TreeSearch(x, k)

if (x = NULL  or  k = x.key)

return x;

if (k < x.key) 

return TreeSearch(x.left, k);

else

return TreeSearch(x.right, k);
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Operations on BSTs: Search

• Here’s another function that does the same 
Iterative-Tree-Search(x, k)

while (x != NULL and k != x.key) 

if (k < x.key)

x = x.left;

else

x = x.right;

return x;
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BST Operations: Minimum

• How can we implement a Minimum() query?

TREE_MINIMUM(x)

while x.lef <> NIL

x = x.left

Return x

• What is the running time?

• Minimum Find the leftmost node in tree

• Maximum  find the rightmost node in the 
tree
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BST Operations: Successor
• Successor of x: the smallest key greater than key[x].

• What is the successor of node 3? Node 15? Node 13?

• What are the general rules for finding the successor of 
node x?  (hint: two cases) 
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BST Operations: Successor

• Two cases:

– x has a right subtree: its successor is minimum 
node in right subtree

– x has no right subtree: x must be on the left sub 
tree of the successor such that x <= successor. So 
the successor is the first ancestor of x whose left 
child is an ancestor of x (or x)

• Intuition: As long as you move to the left up the 
tree, you’re visiting smaller nodes.  
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BST Operations: predecessor

• Two cases:

– x has a left subtree: its predecessor is maximum 
node in left subtree

– x has no left subtree: x must be on the right sub 
tree of the predecessor such that x >= 
predecessor. So the predecessor is the first 
ancestor of x whose right child is an ancestor of x 
(or x)
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Operations of BSTs: Insert

• Adds an element x to the tree 

– the binary search tree property continues to 
hold

• The basic algorithm

– Like the search procedure above

– Use a “trailing pointer” to keep track of where you 
came from

• like inserting into singly linked list

16



BST Operations: Delete

• Several cases:

– x has no children: 

• Remove x 

• Set parent’s link NULL

– x has one child: 

• Replace x with its child

• Set the child’s link NULL

– x has two children: 

• replace x with its successor

• Perform case 0 or 1 to delete it

F

B H

KDA

C

Example: delete K

or H or B
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Elementary Graph Algorithms

• How to represent a graph?

– Adjacency lists

– Adjacency matrix

• How to search a graph? 

– Breadth-first search

– Depth-first search
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Graphs: Adjacency Matrix

• Example:
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• Undirected

• Directed Graph

21
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Graphs: Adjacency List

• How much storage is required?

– The degree of a vertex v = # incident edges

• Two edges are called incident, if they share a vertex

• Directed graphs have in-degree, out-degree

– For directed graphs, # of items in adjacency lists is
 out-degree(v) = |E|
takes (V + E) storage    

– For undirected graphs, # items in adjacency lists is
 degree(v) = 2 |E|    
also (V + E) storage

• So: Adjacency lists take O(V+E) storage
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Breadth-First Search (BFS)

• “Explore” a graph, turning it into a tree

– One vertex at a time

– Expand frontier of explored vertices across the 
breadth of the frontier

• Builds a tree over the graph

– Pick a source vertex to be the root

– Find (“discover”) its children, then their children, 
etc.
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Breadth-First Search
BFS(G, s) {

initialize vertices;

Q = {s};

while (Q not empty) {    

u = Dequeue(Q);

for each v  G.adj[u] {

if (v.color == WHITE)

v.color = GREY;

v.d = u.d + 1;

v.p = u;

Enqueue(Q, v);

}

u.color = BLACK;

}
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Time analysis

• The total running time of BFS is O(V + E)

• Proof: 

– Each vertex is dequeued at most once. Thus, total 
time devoted to queue operations is O(V). 

– For each vertex, the corresponding adjacency list 
is scanned at most once. Since the sum of the 
lengths of all the adjacency lists is Θ(E), the total 
time spent in scanning adjacency lists is O(E). 

– Thus, the total running time is O(V+E)
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Breadth-First Search: Properties

• BFS calculates the shortest-path distance to 
the source node

– Shortest-path distance (s,v) = minimum number 
of edges from s to v, or  if v not reachable from s

• BFS builds breadth-first tree, in which paths to 
root represent shortest paths in G

– Thus, we can use BFS to calculate a shortest path 
from one vertex to another in O(V+E) time
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Depth-First Search

• Depth-first search is another strategy for 
exploring a graph

– Explore “deeper” in the graph whenever possible

– Edges are explored out of the most recently 
discovered vertex v that still has unexplored edges

• Timestamp to help us remember who is “new”

– When all of v’s edges have been explored, 
backtrack to the vertex from which v was 
discovered
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Depth-First Search: The Code
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DFS(G)

{

for each vertex u ∈ G.V

{

u.color = WHITE

u. = NIL

}

time = 0

for each vertex u ∈ G.V

{

if (u.color == WHITE)

DFS_Visit(G, u)

}

}

DFS_Visit(G, u)

{

time = time + 1

u.d = time 

u.color = GREY

for each v ∈ G.Adj[u]

{

if (v.color == WHITE)

v. = u

DFS_Visit(G, v)

}

u.color = BLACK

time = time + 1

u.f = time

}



DFS: running time (cont’d)

• How many times will DFS_Visit() actually be 
called?

– The loops on lines 1–3 and lines 5–7 of DFS take 
time Θ(V), exclusive of the time to execute the 
calls to DFS-VISIT. 

– DFS-VISIT is called exactly once for each vertex v

– During an execution of DFS-VISIT(v), the loop on 
lines 4–7 is executed |Adj[v]| times.

– σ𝑣∈𝑉 |𝐴𝑑𝑗[𝑣]| = Θ(𝐸)

– Total running time is Θ(𝑉 + 𝐸)
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DFS: Different Types of edges

• DFS introduces an important distinction 
among edges in the original graph:

– Tree edge: encounter new vertex 

– Back edge: from a descendent to an ancestor

– Forward edge: from an ancestor to a descendent

– Cross edge: between a tree or subtrees

• Note: tree & back edges are important

– most algorithms don’t distinguish forward & cross
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Minimum Spanning Tree

• Problem: 

– given a connected, undirected, weighted graph 
G = (V, E)

– find a spanning tree using edges that connects all 
nodes with a minimal total weight w(T)= SUM(w[u,v])

• w[u,v] is the weight of edge (u,v)

• Objectives: we will learn

– Generic MST

– Kruskal’s algorithm

– Prim’s algorithm
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Growing a minimum spanning tree

• Building up the solution

– We will build a set A of edges

– Initially, A has no edges.

– As we add edges to A, maintain a loop invariant

• Loop invariant: A is a subset of some MST

– Add only edges that maintain the invariant 

– Definition: If A is a subset of some MST, an edge 
(u, v) is safe for A, if and only if A ∪ {(u, v)} is also a 
subset of some MST 

– So we will add only safe edges
32



Generic MST algorithm

33



How do we find safe edges?

• Let edge set A be a subset of some MST

• (S, V −S) be a cut that respects edge set A

– No edges in A crosses the cut

• (u, v) be a light edge crossing cut (S, V −S). 

• Then, (u, v) is safe for A.
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MST: optimal substructure 

• MSTs satisfy the optimal substructure property: an 
optimal tree is composed of optimal subtrees

– Let T be an MST of G with an edge (u,v) in the middle

– Removing (u,v) partitions T into two trees T1 and T2

– Claim: T1 is an MST of G1 = (V1,E1), and T2 is an MST of G2 = 
(V2,E2)
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Kruskal’s algorithm

• Starts with each vertex being its own 
component

• Repeatedly merges two components into one 
by choosing the light edge that connects them

• Scans the set of edges in monotonically 
increasing order by weight

• Uses a disjoint-set data structure to determine 
whether an edge connects vertices in different 
components.
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Disjoint Sets Data Structure 

• A disjoint-set is a collection C ={S1, S2,…, Sk} of 
distinct dynamic sets

• Each set is identified by a member of the set, called 
representative.

• Disjoint set operations:

– MAKE-SET(x): create a new set with only x
• assume x is not already in some other set.

– UNION(x,y): combine the two sets containing x and y into 
one new set. 
• A new representative is selected.

– FIND-SET(x): return the representative of the set 
containing x.
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Kruskal(G, w)

{ 

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}

Kruskal’s Algorithm
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Kruskal’s Algorithm: Running Time

• Initialize A: O(1)

• First for loop: |V| MAKE-SETs

• Sort E: O(E lg E)

• Second for loop: O(E) FIND-SETs and UNIONs

• O(V) +O (E α(V)) + O(E lg E) 
– Since G is connected, |E| ≥ |V|−1⇒ O(E α(V)) + O(E lg E)

– α(|V|) = O(lg V) = O(lg E)

– Therefore, the total time is O(E lg E)

– |E| ≤ |V|2 ⇒ lg |E| = O(2 lg V) = O(lg V)

– Therefore, O(E lg V) time
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Prim’s algorithm
• Build a tree A (A is always a tree)

– Starts from an arbitrary “root” r.

– At each step, find a light edge crossing the cut (VA, V − 
VA), where VA = vertices that A is incident on. 

– Add this light edge to A.

• GREEDY CHOICE: 
add min weight to A 

• Use a priority queue Q to quickly find the light edge
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Prim’s Algorithm

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key )

v. = u

v.key = w(u,v)
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Prim’s Algorithm: running time

• We can use the BUILD-MIN-HEAP procedure 
to perform the initialization in lines 1–5 in 
O(V) time

• EXTRACT-MIN operation is called |V| times, 
and each call takes O(lg V) time, the total time 
for all calls to EXTRACT-MIN is O(V lg V)
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Running time (cont’d)

• The for loop in lines 8–11 is executed O(E) 
times altogether, since the sum of the lengths 
of all adjacency lists is 2 |E|. 

– Lines 9 -10 take constant time

– line 11 involves an implicit DECREASE-KEY 
operation on the min-heap, which takes O(lg V) 
time

• Thus, the total time for Prim's algorithm is 
O(V) +O(V lg V) + O(E lg V) = O(E lg V)

– The same as Kruskal's algorithm
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Single source shortest path problem

• Problem: given a weighted directed graph G, 
find the minimum-weight path from a given 
source vertex s to another vertex v

– “Shortest-path” -> Weight of the path is minimum  

– Weight of a path is the sum of the weight of edges 
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Shortest path properties

• Optimal substructure property: any subpath of 
a shortest path is a shortest path

• In graphs with negative weight cycles, some 
shortest paths will not exist:

• Negative weight edges are ok for some cases

• Shortest paths cannot contain cycles
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Initialization

• All the shortest-paths algorithms start with 
INIT-SINGLE-SOURCE

INIT-SINGLE-SOURCE(G, s)

for each vertex v ∈ G.V

v.d = ∞

v.π = NIL

s.d = 0
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Relaxation: reach v by u

Relax(u, v, w) { 

if (v.d > u.d + w(u,v)) 

v.d = u.d + w(u,v)

v. = u

}
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Properties of shortest paths

• Triangle inequality
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Upper-bound property
• Always have v.d ≥ (s,v)

– Once v.d = (s,v), it never changes

• Proof: Initially, it is true:  v.d = ∞

• Supposed there is vertex such that v.d < (s,v)

• Without loss of generality, v is the first vertex for this 
happens

• Let u be the vertex that causes v.d to change

• Then v.d = u.d + w(u,v)

• So, v.d < (s,v)  ≤ (s,u) + w (u,v) < u.d + w(u,v)

• Then v.d < u.d + w(u,v)

• Contradict to v.d = u.d + w(u,v)
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No-path property

• If (s,v) = ∞, then v.d = ∞ always

• Proof: v.d ≥ (s,v) = ∞  v.d = ∞ 
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Convergence property
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When the “if” condition is true, v.d = u.d + w(u, v) 
When the “if” condition is false, v.d ≤ u.d + w(u, v)



Path relaxation property

52



Bellman-Ford algorithm

BellmanFord(G, w, s)

INIT-SINGLE-SOURCE(G, s)

for i=1 to |G.V|-1

for each edge (u,v)  G.E

Relax(u, v, w);

for each edge (u,v)  G.E

if (v.d > u.d + w(u,v))

return “no solution”;

Relax(u,v,w): if (v.d > u.d + w(u,v)) 

v.d = u.d + w(u,v)

Relaxation: 

Make |V|-1 passes, 

relaxing each edge

Test for solution

Under what condition

do we get a solution?
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Running time

• Initialization: Θ(V)

• Line 2-4 : Θ(E) * |V|-1 passes

• Line 5-7 : O(E)

• O(VE)

54



Dijkstra’s Algorithm

• Assumes no negative-weight edges.

• Maintains a vertex set S whose shortest path from s has been 

determined.

• Repeatedly selects u in V–S with minimum Shortest Path estimate 

(greedy choice).

• Store V–S in priority queue Q. DIJKSTRA(G, w, s)

Initialize-SINGLE-SOURCE(G, s);

S = ;

Q = G.V;

while Q  

u = Extract-Min(Q);

S = S  {u};

for each v  G.Adj[u]

Relax(u, v, w)
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Dijkstra’s Running Time

• Extract-Min executed |V| time

• Decrease-Key executed |E| time

• Time = |V| TExtract-Min + |E| TDecrease-Key

• Time = O(VlgV) + O (ElgV) = O(ElgV)
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Dynamic Programming (DP)

• Like divide-and-conquer, solve problem by combining 
the solutions to sub-problems.

• Divide-and-conquer vs. DP:

– divide-and-conquer: Independent sub-problems

• solve sub-problems independently and recursively, ( so 
same sub-problems solved repeatedly)

– DP: Sub-problems are dependent 

• sub-problems share sub-sub-problems

• every sub-problem is solved just once

• solutions to sub-problems are stored in a table and used 
for solving higher level sub-problems.
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Overview of DP

• Not a specific algorithm, but a technique (like 
divide-and-conquer).

• Doesn’t really refer to computer programming

• Application domain of DP

– Optimization problem: find a solution with the 
optimal (maximum or minimum) value 
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Matrix-chain multiplication problem

• Given a chain A1, A2,…, An of n matrices

– where for i = 1,…, n, matrix Ai has dimension pi-1  pi

– fully parenthesize the product A1A2An in a way that 
minimizes the number of  scalar multiplications.

• What is the minimum number of multiplications 
required to compute A1· A2 ·… · An?

• What order of matrix multiplications achieves this 
minimum? This is our goal !
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Step 1: Find the structure of an optimal 
parenthesization

• Finding the optimal substructure and using it to 

construct an optimal solution to the problem based on 

optimal solutions to subproblems.

• The key is to find k ; then, we can build the global 

optimal solution

((A1A2Ak)(Ak+1Ak+2An))

Both must be Optimal for sub-chain

Then combine them for the original problem
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Step 2: A recursive solution to define the cost of 
an optimal solution

• Define m[i, j] = the minimum number of 
multiplications needed to compute the matrix 
Ai..j = Ai Ai+1Aj

• Goal: to compute m[1, n]

• Basis:  m(i, i) = 0

– Single matrix, no computation

• Recursion:  How to define m[i, j] recursively?

– ((AiA2Ak)(Ak+1Ak+2Aj))
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Step2: Defining m[i,j] Recursively

• Consider all possible ways to split Ai through Aj
into two pieces: (Ai ·…· Ak)·(Ak+1 ·… · Aj)

• Compare the costs of all these splits:

– best case cost for computing the product of the 
two pieces

– plus the cost of multiplying the two products

– Take the best one

– m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj  }
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Identify Order for Solving Subproblems

• Solve the subproblems (i.e., fill in the table 
entries)  along the diagonal
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1 2 3 4 5

1 0

2 n/a 0

3 n/a n/a 0

4 n/a n/a n/a 0

5 n/a n/a n/a n/a 0



An example
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1 2 3 4

1 0 1200

2 n/a 0 400

3 n/a n/a 0 10000

4 n/a n/a n/a 0

m[1,2] = A1A2 : 30X1X40 = 1200, 
m[2,3] = A2A3 : 1X40X10 = 400, 
m[3,4] = A3A4: 40X10X25 = 10000 

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25



An example (cont’d)
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1 2 3 4

1 0 1200 700

2 n/a 0 400

3 n/a n/a 0 10000

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,3]: i = 1, j = 3, k = 1, 2

= min{ m[1,1]+m[2,3]+p0*p1*p3, m[1, 2]+m[3,3]+p0*p2*p3}

= min{0 + 400 + 30*1*10, 1200+0+30*40*10} = 700

m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj  }



An example (cont’d)
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1 2 3 4

1 0 1200 700

2 n/a 0 400 650

3 n/a n/a 0 10000

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[2,4]: i = 2, j = 4, k = 2, 3

= min{ m[2,2]+m[3,4]+p1*p2*p4, m[2, 3]+m[4,4]+p1*p3*p4}

= min{0 + 10000 + 1*40*25, 400+0+1*10*25} = 650

m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj  }



An example (cont’d)
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1 2 3 4

1 0 1200 700 1400

2 n/a 0 400 650

3 n/a n/a 0 10000

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,4]: i = 1, j = 4, k = 1, 2, 3
= min{ m[1,1]+m[2,4]+p0*p1*p4, m[1,2]+m[3,4]+p0*p2*p4,

m[1,3]+m[4,4]+p0*p3*p4}

= min{0+650+30*1*25, 1200+10000+30*40*25, 700+0+30*10*25} 
= 1400

m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj  }
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Step 3: Keeping Track of the Order

• We know the cost of the cheapest order, but 

what is that cheapest order?

– Use another array s[] 

– update it when computing the minimum cost in the 

inner loop

• After m[] and s[] are done, we call a recursive 

algorithm on s[] to print out the actual order



An example
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1 2 3 4

1 0 1

2 n/a 0 2

3 n/a n/a 0 3

4 n/a n/a n/a 0

m[1,2] = A1A2 : 30X1X40 = 1200, s[1,2] = 1

m[2,3] = A2A3 : 1X40X10 = 400, s[2,3] = 2 

m[3,4] = A3A4: 40X10X25 = 10000, s[3,4] = 3 

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25



An example (cont’d)
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1 2 3 4

1 0 1 1

2 n/a 0 2

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,3]: i = 1, j = 3, k = 1, 2
= min{ m[1,1]+m[2,3]+p0*p1*p3, m[1, 2]+m[3,3]+p0*p2*p3}

= min{0 + 400 + 30*1*10, 1200+0+30*40*10} = 700
m[1,3] is the minimum value when k = 1, so s[1,3] = 1



An example (cont’d)
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1 2 3 4

1 0 1 1

2 n/a 0 2 3

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[2,4]: i = 2, j = 4, k = 2, 3
= min{ m[2,2]+m[3,4]+p1*p2*p4, m[2, 3]+m[4,4]+p1*p3*p4}

= min{0 + 10000 + 1*40*25, 400+0+1*10*25} = 650
m[2,4] is the minimum value when k = 3, so s[2,4] = 3



An example (cont’d)
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1 2 3 4

1 0 1 1 1

2 n/a 0 2 3

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,4]: i = 1, j = 4, k = 1, 2, 3
= min{ m[1,1]+m[2,4]+p0*p1*p4, m[1,2]+m[3,4]+p0*p2*p4,

m[1,3]+m[4,4]+p0*p3*p4}

= min{0+650+30*1*25, 1200+10000+30*40*25, 700+0+30*10*25} 
= 1400
m[1,4] is the minimum value when k = 1, so s[1,4] = 1



Step 4: Using S to Print Best Ordering
(cont’d)
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1 2 3 4

1 0 1 1 1

2 n/a 0 2 3

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 A2 A3 A4

s[1,4] = 1 - > A1 (A2 A3 A4)

s[2,4] = 3 - > (A2 A3) A4

A1 (A2 A3 A4) -> A1 ((A2 A3) A4) 



Step 3: Computing the optimal 
costs

MATRIX-CHAIN-ORDER(p)
1 n = length[p] -1 
2  Let m [1..n, 1..n] and s[1.. n-1, 2..n] be new tables
3 for i = 1 to n  
4 m[i, i] = 0
5 for l = 2 to n                  
6 for i = 1 to (n - l + 1)  
7 j = i + l - 1   
8 m[i, j] = 

9 for k = i to (j - 1)
10 q = m[i, k] + m[k + 1, j] + pi-1pkpj

11 if q < m[i, j]
12 m[i, j] = q
13 s[i, j] = k
14 return m and s

Complexity: O(n3) Space: (n2)
90
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Step 4: Using S to Print Best Ordering

Print-Optimal-PARENS (s, i, j)

if (i == j) then   

print "A" + i //+ is string concatenation

else 

print “(“

Print-Optimal-PARENS (s, i,  s[i, j] )

Print-Optimal-PARENS (s,  s[i, j]+1, j)

Print ")"

 s[i,j] is the split position for AiAi+1…Aj  Ai…As[i,j] and 
As[i,j]+1…Aj

 Call Print-Optimal-PARENS(s, 1, n)



16.3 Elements of dynamic 
programming

• Optimal substructure
– a problem exhibits optimal substructure if an optimal solution to 

the problem contains within its optimal solutions to 
subproblems.

– Example:  Matrix-multiplication problem

• Overlapping subproblems
– The space of subproblems is “small” in that a recursive 

algorithm for the problem solves the same subproblems over 
and over. 

– Total number of distinct subproblems is typically polynomial in 
input size

• Reconstructing an optimal solution

92



Optimal structure may not exist

• We cannot assume it when it is not there 
• Consider the following two problems. in which we are given a 

directed graph G =(V,E) and vertices u, v V

– P1: Unweighted shortest path (USP)

• Find a path from u to v consisting of the fewest edges. 
Good for Dynamic programming.

– P2: Unweighted longest simple path (ULSP)

• A path is simple if all vertices in the path are distinct

• Find a simple path from u to v consisting of the most 
edges. Not good for Dynamic programming.
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Overlapping Subproblems
• Second ingredient: an optimization problem 

must have for DP is that the space of 
subproblems must be “small”, in a sense that

– A recursive algorithm solves the same 
subproblems over and over, rather than 
generating new subproblems. 

– The total number of distinct subproblems is 
polynomial in the input size

– DP algorithms use a table to store the solutions to 
subproblems and look up the table in a constant 
time
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Overlapping Subproblems (Cont’d)

• In contrast, a problem for which a divide-and-
conquer approach is suitable when the 
recursive steps always generate new problems 
at each step of the recursion.

• Examples: Mergesort and Quicksort.

– Sorting on smaller and smaller arrays (each 
recursion step work on a different subarray)
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A Recursive Algorithm for Matrix-Chain Multiplication

RECURSIVE-MATRIX-CHAIN(p,i,j), called with(p,1,n)

1. if (i ==j) then return 0

2. m[i,j] = 

3. for k= i to (j-1)

4. q = RECURSIVE-MATRIX-CHAIN(p,i,k)                        

+ RECURSIVE-MATRIX-CHAIN(p,k+1,j) + pi-1pkpj

5. if (q < m[i,j] ) then m[i,j] = q

6. return m[i,j]

The running time of the algorithm is O(2n). 



The recursion tree

for k= i to (j-1) 

q = RECURSIVE-MATRIX-CHAIN(p,i,k)  

+ RECURSIVE-MATRIX-CHAIN(p,k+1,j) + pi-1pkpj
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RECURSIVE-MATRIX-CHAIN(p,1,4)

i =1, j = 4, k = 1, 2, 3 (i to j-1)

needs to solve (1, k) (k+1, 4)

k = 1 - > (1, 1) (2, 4)

k = 2 - > (1, 2) (3, 4)

K = 3 ->  (1, 3) (4, 4)
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•

Recursion tree of RECURSIVE-MATRIX-
CHAIN(p,1,4)

 This divide-and-conquer recursive algorithm solves the 
overlapping problems over and over. 

 DP solves the same subproblems only once

 The computations in darker color are replaced by table loop 
up in MEMOIZED-MATRIX-CHAIN(p,1,4). 

 The divide-and-conquer is better for the problem which 
generates brand-new problems at each step of recursion.  
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General idea of Memoization

• A variation of DP

• Keep the same efficiency as DP

• But in a top-down manner.

• Idea:

– When a subproblem is first encountered, its solution needs to 
be solved, and then is stored in the corresponding entry of the 
table.

– If the subproblem is encountered again in the future, just look 
up the table to take the value.  
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Memoized Matrix Chain 

LOOKUP-CHAIN(p,i,j)

1. if m[i,j]< then return m[i,j]

2. if (i ==j)  then m[i,j] =0

3. else for k= i to j-1

4. q=LOOKUP-CHAIN(p,i,k)+  

5. LOOKUP-CHAIN(p,k+1,j) + pi-1pkpj

6. if (q< m[i,j])  then m[i,j] = q

7. return m[i,j]
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DP VS. Memoization

• MCM can be solved by DP or Memoized algorithm, 
both in O(n3)

– Total (n2) subproblems, with O(n) for each.

• If all subproblems must be solved at least once, DP is 
better by a constant factor due to no recursive 
involvement as in memorized algorithm

• If some subproblems may not need to be solved, 
Memoized algorithm may be more efficient

– since it only solve these subproblems which are definitely 
required. 



Longest Common Subsequence (LCS)

• DNA analysis to compare two DNA strings

• DNA string: a sequence of symbols A,C,G,T

– S =ACCGGTCGAGCTTCGAAT

• Subsequence of X is X with some symbols left out

– Z =CGTC is a subsequence of X =ACGCTAC

• Common subsequence Z of X and Y: a subsequence of X and also a 

subsequence of Y

– Z =CGA is a common subsequence of X =ACGCTAC and Y =CTGACA

• Longest Common Subsequence (LCS): the longest one of common 

subsequences

– Z' =CGCA is the LCS of the above X and Y

• LCS problem: given X = <x1, x2,…, xm> and Y = <y1, y2,…, yn>, find their LCS
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LCS DP step 2: Recursive Solution

• What the theorem says:

– If xm== yn, find LCS of Xm-1 and Yn-1, then append xm

– If xm  yn, find  (1) the LCS of Xm-1 and Yn and (2) the 
LCS of Xm and Yn-1; then, take which one is longer

• Overlapping substructure: 

– Both LCS of Xm-1 and Yn and LCS of Xm and Yn-1 will 
need to solve LCS of Xm-1 and Yn-1 first

• c[i,j] is the length of LCS of Xi and Yj
c[i,j]=  0                                 if i = 0, or j = 0

c[i-1, j-1] + 1               if i, j >0 and xi = yj

max{ c[i-1,j], c[i,j-1] }   if i, j >0 and xi  yj
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LCS DP step 3: Computing the Length of LCS

• c[0..m, 0..n], where c[i,j] is defined as above.

– c[m,n] is the answer (length of LCS)

• b[1..m, 1..n], where b[i,j] points to the table 
entry corresponding to the optimal subproblem
solution chosen when computing c[i,j]. 

– From b[m, n] backward to find the LCS. 
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0                                  if i=0, or j=0

c[i,j]=       c[i-1, j-1] + 1               if i, j >0 and xi = yj

max{ c[i-1,j], c[i,j-1] }   if i, j >0 and xi  yj



LCS DP Algorithm
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LCS Example (0)
j       0        1            2           3           4           5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

X = ABCB;   m = |X| = 4
Y = BDCAB; n = |Y| = 5
Allocate array c[5,6]

ABCB

BDCAB
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LCS Example (1)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

for i = 1 to m c[i,0] = 0 
for j = 1 to n  c[0,j] = 0

ABCB

BDCAB
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LCS Example (2)
j       0        1 2    3           4          5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

0

ABCB

BDCAB
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LCS Example (3)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

0 0 0

ABCB

BDCAB
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LCS Example (4)
j       0        1          2   3     4 5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

0 0 0 1

ABCB

BDCAB
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LCS Example (5)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

000 1 1

ABCB

BDCAB
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LCS Example (6)
j       0        1 2            3          4        5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

0 0 10 1

1

ABCB

BDCAB

112



LCS Example (7)
j       0      1        2           3            4 5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 1 11

ABCB

BDCAB
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LCS Example (8)
j      0       1        2            3      4        5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 1 1 1 2

ABCB

BDCAB
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LCS Example (10)
j       0        1          2 3            4           5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

21 1 11

1 1

ABCB

BDCAB
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LCS Example (11)
j       0     1          2            3 4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 21 11

1 1 2

ABCB

BDCAB
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LCS Example (12)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 21 1

1 1 2

1

22

ABCB

BDCAB
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LCS Example (13)
j       0    1 2        3          4         5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 21 1

1 1 2

1

22

1

ABCB

BDCAB
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LCS Example (14)
j       0    1          2   3 4 5 

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 21 1

1 1 2

1

22

1 1 2 2

ABCB

BDCAB
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LCS Example (15)
j       0    1          2        3          4           5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if ( Xi == Yj )
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3

ABCB

BDCAB
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15.8



Greedy Algorithms
• We have learned two design techniques

– Divide-and-conquer

– Dynamic Programming

• Now, the third  Greedy Algorithms

– Optimization often goes through some choices

– Make local best choices  hope to achieve global 
optimization

– Many times, this works; Other times, does NOT!

• Minimum spanning tree algorithms

– We must carefully examine if we can apply this 
method 122



An activity-selection problem

• Activity set S = {a1, a2, ..., an}

• n activities wish to use a single resource 

• Each activity ai has a start time si and a finish time

fi, where 0  si < fi < 

• If selected, activity ai take place during the half-open 

time interval [si, fi)

• Activities ai and aj are compatible if the intervals [si, 

fi) and [sj, fj) do not overlap 

– ai and aj are compatible if si  fj or sj  fi
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The greedy choice
• Intuition: Choose an activity that leaves the resource 

available for as many other activities as possible

• It must finish as early as possible: greedy

• Let Sk ={ai S : si >= fk} be the set of activities that 

start after activity ak finishes

• If we make the greedy choice of activity a1 (i.e., a1 is 

the first activity to finish), then S1 remains as the 

only subproblem to solve.
• a1 + S1 , if  S1 is the optimal solution for others  a1 must be in 

the optimal solution

• Is this correct?
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Optimal substructure
• Si j  is the subset of activities that can 

– start after activity ai finishes 

– and finish before activity aj starts

– Si j = { ak S: fi  sk < fk  sj }

– f0= 0 and sn+1 = . Then S = S0,n+1, and the ranges for i
and j are given by 0  i, j  n+1

• Define Aij as the maximum set in Sij

– Selecting ak in the optimal solutions generates two 
subproblems

– Aij = Aik  {ak}  Akj

– |Aij|= |Aik| +1+ |Akj|
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Converting a dynamic-programming solution to 
a greedy solution

• Theorem 16.1 Consider any nonempty subproblem Sk, and let 
am be the activity in Sk with the earliest finish time:    fm = min  

{ fx : ax  Sk}. Then am is used in some maximum-size subset of 
mutually compatible activities of Sk

• Let Ak be the maximum-size subset of mutually 
compatible activities in Sk

• Let aj be the activity in Ak with the earliest finish time

• If aj == am , we are done.

• Otherwise, A’k = Ak - {aj}  {am} 

• We have new Ak with am
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An iterative greedy algorithm
GREEDY-ACTIVITY-SELECTOR(s, f)
1 n = s.length

2 A = {a1}

3 k = 1

4 for m = 2 to n

5 if sm  fk

6 then A = A  {am}

7 k = m

8 return A
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Ingredients of Greedy ALs

• Greedy-choice property: A global optimal 
solution can be achieved by making a local 
optimal choice.

– Without considering results of subproblems

• Optimal substructure: An optimal solution to 
the problem within its optimal solution to 
subproblem
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The End
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