
COT 6405 Introduction to Theory of
Algorithms

Final exam review

11/28/2016 1

About the final exam
• The final will cover everything we have

learned so far.

• Closed books, closed computers, and closed
notes.

• A front-side cheat sheet is allowed

• The final grades will be curved

11/28/2016 2

Question type

• Possible types of questions:

– proofs

– General questions and answer

– Problems/computational questions

• The content covered by midterms I and II
takes 60%

• The content we studied after midterm II takes
40%

Quick summary of previous content

• How to solve the recurrences

– Substitution method

– Tree method

– Master theorem

• Comparison based sorting algorithms

– Merge sort, quick sort, and Heap sort

• Linear time sorting algorithms

– Counting sort, Bucket sort, and Radix sort

11/28/2016 4

Quick summary (cont’d)

• Basic heap operations:

– Build-Max-Heap, Max-Heapify

• Order statistics

– How to find the k-th largest element : BigFive
algorithm

• Hash tables

– The definition and how it works

– Hash function h: Mapping from Universe U to the
slots of a hash table T

11/28/2016 5

Binary Search Trees

• Binary Search Trees (BSTs) are an important
data structure for dynamic sets

• In addition to satellite data, nodes have:

– key: an identifying field inducing a total ordering

– left: pointer to a left child (may be NULL)

– right: pointer to a right child (may be NULL)

– p: pointer to a parent node (NULL for root)

6

Node implementation

11/28/2016 7

data key

Left right

data key

Left right

parent

parent

Null

Binary Search Trees

• BST property: Let x be a node in a binary search tree.
If y is a node in the left subtree of x, then y.key <
x.key. If y is a node in the right subtree of x, then
y.key > x.key. Different BSTs can be constructed to
represent the same set of data

8

6

3 7

2 5 8

8

7

5

2

3

6

Average case O(lgn) worst case O(n)

Walk on BST

• A: prints elements in sorted (increasing) order
InOrderTreeWalk(x)

InOrderTreeWalk(x.left);

print(x);

InOrderTreeWalk(x.right);

• This is called an inorder tree walk

– Preorder tree walk: print root, then left, then right

– Postorder tree walk: print left, then right, then
root

9

Operations on BSTs: Search

• Given a key and a pointer to a node, returns
an element with that key or NULL:
TreeSearch(x, k)

if (x = NULL or k = x.key)

return x;

if (k < x.key)

return TreeSearch(x.left, k);

else

return TreeSearch(x.right, k);

10

Operations on BSTs: Search

• Here’s another function that does the same
Iterative-Tree-Search(x, k)

while (x != NULL and k != x.key)

if (k < x.key)

x = x.left;

else

x = x.right;

return x;

11

BST Operations: Minimum

• How can we implement a Minimum() query?

TREE_MINIMUM(x)

while x.lef <> NIL

x = x.left

Return x

• What is the running time?

• Minimum Find the leftmost node in tree

• Maximum  find the rightmost node in the
tree

12

BST Operations: Successor
• Successor of x: the smallest key greater than key[x].

• What is the successor of node 3? Node 15? Node 13?

• What are the general rules for finding the successor of
node x? (hint: two cases)

13

BST Operations: Successor

• Two cases:

– x has a right subtree: its successor is minimum
node in right subtree

– x has no right subtree: x must be on the left sub
tree of the successor such that x <= successor. So
the successor is the first ancestor of x whose left
child is an ancestor of x (or x)

• Intuition: As long as you move to the left up the
tree, you’re visiting smaller nodes.

14

BST Operations: predecessor

• Two cases:

– x has a left subtree: its predecessor is maximum
node in left subtree

– x has no left subtree: x must be on the right sub
tree of the predecessor such that x >=
predecessor. So the predecessor is the first
ancestor of x whose right child is an ancestor of x
(or x)

15

Operations of BSTs: Insert

• Adds an element x to the tree

– the binary search tree property continues to
hold

• The basic algorithm

– Like the search procedure above

– Use a “trailing pointer” to keep track of where you
came from

• like inserting into singly linked list

16

BST Operations: Delete

• Several cases:

– x has no children:

• Remove x

• Set parent’s link NULL

– x has one child:

• Replace x with its child

• Set the child’s link NULL

– x has two children:

• replace x with its successor

• Perform case 0 or 1 to delete it

F

B H

KDA

C

Example: delete K

or H or B

17

Elementary Graph Algorithms

• How to represent a graph?

– Adjacency lists

– Adjacency matrix

• How to search a graph?

– Breadth-first search

– Depth-first search

19

Graphs: Adjacency Matrix

• Example:

20

• Undirected

• Directed Graph

21

Graphs: Adjacency List

Graphs: Adjacency List

• How much storage is required?

– The degree of a vertex v = # incident edges

• Two edges are called incident, if they share a vertex

• Directed graphs have in-degree, out-degree

– For directed graphs, # of items in adjacency lists is
 out-degree(v) = |E|
takes (V + E) storage

– For undirected graphs, # items in adjacency lists is
 degree(v) = 2 |E|
also (V + E) storage

• So: Adjacency lists take O(V+E) storage
22

Breadth-First Search (BFS)

• “Explore” a graph, turning it into a tree

– One vertex at a time

– Expand frontier of explored vertices across the
breadth of the frontier

• Builds a tree over the graph

– Pick a source vertex to be the root

– Find (“discover”) its children, then their children,
etc.

23

Breadth-First Search
BFS(G, s) {

initialize vertices;

Q = {s};

while (Q not empty) {

u = Dequeue(Q);

for each v  G.adj[u] {

if (v.color == WHITE)

v.color = GREY;

v.d = u.d + 1;

v.p = u;

Enqueue(Q, v);

}

u.color = BLACK;

}

} 24

Time analysis

• The total running time of BFS is O(V + E)

• Proof:

– Each vertex is dequeued at most once. Thus, total
time devoted to queue operations is O(V).

– For each vertex, the corresponding adjacency list
is scanned at most once. Since the sum of the
lengths of all the adjacency lists is Θ(E), the total
time spent in scanning adjacency lists is O(E).

– Thus, the total running time is O(V+E)

11/28/2016 25

Breadth-First Search: Properties

• BFS calculates the shortest-path distance to
the source node

– Shortest-path distance (s,v) = minimum number
of edges from s to v, or  if v not reachable from s

• BFS builds breadth-first tree, in which paths to
root represent shortest paths in G

– Thus, we can use BFS to calculate a shortest path
from one vertex to another in O(V+E) time

26

Depth-First Search

• Depth-first search is another strategy for
exploring a graph

– Explore “deeper” in the graph whenever possible

– Edges are explored out of the most recently
discovered vertex v that still has unexplored edges

• Timestamp to help us remember who is “new”

– When all of v’s edges have been explored,
backtrack to the vertex from which v was
discovered

27

Depth-First Search: The Code

28

DFS(G)

{

for each vertex u ∈ G.V

{

u.color = WHITE

u. = NIL

}

time = 0

for each vertex u ∈ G.V

{

if (u.color == WHITE)

DFS_Visit(G, u)

}

}

DFS_Visit(G, u)

{

time = time + 1

u.d = time

u.color = GREY

for each v ∈ G.Adj[u]

{

if (v.color == WHITE)

v. = u

DFS_Visit(G, v)

}

u.color = BLACK

time = time + 1

u.f = time

}

DFS: running time (cont’d)

• How many times will DFS_Visit() actually be
called?

– The loops on lines 1–3 and lines 5–7 of DFS take
time Θ(V), exclusive of the time to execute the
calls to DFS-VISIT.

– DFS-VISIT is called exactly once for each vertex v

– During an execution of DFS-VISIT(v), the loop on
lines 4–7 is executed |Adj[v]| times.

– σ𝑣∈𝑉 |𝐴𝑑𝑗[𝑣]| = Θ(𝐸)

– Total running time is Θ(𝑉 + 𝐸)
11/28/2016 29

DFS: Different Types of edges

• DFS introduces an important distinction
among edges in the original graph:

– Tree edge: encounter new vertex

– Back edge: from a descendent to an ancestor

– Forward edge: from an ancestor to a descendent

– Cross edge: between a tree or subtrees

• Note: tree & back edges are important

– most algorithms don’t distinguish forward & cross

30

Minimum Spanning Tree

• Problem:

– given a connected, undirected, weighted graph
G = (V, E)

– find a spanning tree using edges that connects all
nodes with a minimal total weight w(T)= SUM(w[u,v])

• w[u,v] is the weight of edge (u,v)

• Objectives: we will learn

– Generic MST

– Kruskal’s algorithm

– Prim’s algorithm
31

Growing a minimum spanning tree

• Building up the solution

– We will build a set A of edges

– Initially, A has no edges.

– As we add edges to A, maintain a loop invariant

• Loop invariant: A is a subset of some MST

– Add only edges that maintain the invariant

– Definition: If A is a subset of some MST, an edge
(u, v) is safe for A, if and only if A ∪ {(u, v)} is also a
subset of some MST

– So we will add only safe edges
32

Generic MST algorithm

33

How do we find safe edges?

• Let edge set A be a subset of some MST

• (S, V −S) be a cut that respects edge set A

– No edges in A crosses the cut

• (u, v) be a light edge crossing cut (S, V −S).

• Then, (u, v) is safe for A.

34

MST: optimal substructure

• MSTs satisfy the optimal substructure property: an
optimal tree is composed of optimal subtrees

– Let T be an MST of G with an edge (u,v) in the middle

– Removing (u,v) partitions T into two trees T1 and T2

– Claim: T1 is an MST of G1 = (V1,E1), and T2 is an MST of G2 =
(V2,E2)

35

Kruskal’s algorithm

• Starts with each vertex being its own
component

• Repeatedly merges two components into one
by choosing the light edge that connects them

• Scans the set of edges in monotonically
increasing order by weight

• Uses a disjoint-set data structure to determine
whether an edge connects vertices in different
components.

11/28/2016 36

Disjoint Sets Data Structure

• A disjoint-set is a collection C ={S1, S2,…, Sk} of
distinct dynamic sets

• Each set is identified by a member of the set, called
representative.

• Disjoint set operations:

– MAKE-SET(x): create a new set with only x
• assume x is not already in some other set.

– UNION(x,y): combine the two sets containing x and y into
one new set.
• A new representative is selected.

– FIND-SET(x): return the representative of the set
containing x.

11/28/2016 37

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}

Kruskal’s Algorithm

38

Kruskal’s Algorithm: Running Time

• Initialize A: O(1)

• First for loop: |V| MAKE-SETs

• Sort E: O(E lg E)

• Second for loop: O(E) FIND-SETs and UNIONs

• O(V) +O (E α(V)) + O(E lg E)
– Since G is connected, |E| ≥ |V|−1⇒ O(E α(V)) + O(E lg E)

– α(|V|) = O(lg V) = O(lg E)

– Therefore, the total time is O(E lg E)

– |E| ≤ |V|2 ⇒ lg |E| = O(2 lg V) = O(lg V)

– Therefore, O(E lg V) time
39

Prim’s algorithm
• Build a tree A (A is always a tree)

– Starts from an arbitrary “root” r.

– At each step, find a light edge crossing the cut (VA, V −
VA), where VA = vertices that A is incident on.

– Add this light edge to A.

• GREEDY CHOICE:
add min weight to A

• Use a priority queue Q to quickly find the light edge

40

Prim’s Algorithm

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

41

Prim’s Algorithm: running time

• We can use the BUILD-MIN-HEAP procedure
to perform the initialization in lines 1–5 in
O(V) time

• EXTRACT-MIN operation is called |V| times,
and each call takes O(lg V) time, the total time
for all calls to EXTRACT-MIN is O(V lg V)

11/28/2016 42

Running time (cont’d)

• The for loop in lines 8–11 is executed O(E)
times altogether, since the sum of the lengths
of all adjacency lists is 2 |E|.

– Lines 9 -10 take constant time

– line 11 involves an implicit DECREASE-KEY
operation on the min-heap, which takes O(lg V)
time

• Thus, the total time for Prim's algorithm is
O(V) +O(V lg V) + O(E lg V) = O(E lg V)

– The same as Kruskal's algorithm
11/28/2016 43

Single source shortest path problem

• Problem: given a weighted directed graph G,
find the minimum-weight path from a given
source vertex s to another vertex v

– “Shortest-path” -> Weight of the path is minimum

– Weight of a path is the sum of the weight of edges

11/28/2016 44

Shortest path properties

• Optimal substructure property: any subpath of
a shortest path is a shortest path

• In graphs with negative weight cycles, some
shortest paths will not exist:

• Negative weight edges are ok for some cases

• Shortest paths cannot contain cycles

45

Initialization

• All the shortest-paths algorithms start with
INIT-SINGLE-SOURCE

INIT-SINGLE-SOURCE(G, s)

for each vertex v ∈ G.V

v.d = ∞

v.π = NIL

s.d = 0

46

Relaxation: reach v by u

Relax(u, v, w) {

if (v.d > u.d + w(u,v))

v.d = u.d + w(u,v)

v. = u

}

47

95 2

75 2

Relax

65 2

65 2

Relax

u

u

u

u

v

v

v

v

decrease by 2 unchanged

Properties of shortest paths

• Triangle inequality

48

u

s v

Upper-bound property
• Always have v.d ≥ (s,v)

– Once v.d = (s,v), it never changes

• Proof: Initially, it is true: v.d = ∞

• Supposed there is vertex such that v.d < (s,v)

• Without loss of generality, v is the first vertex for this
happens

• Let u be the vertex that causes v.d to change

• Then v.d = u.d + w(u,v)

• So, v.d < (s,v) ≤ (s,u) + w (u,v) < u.d + w(u,v)

• Then v.d < u.d + w(u,v)

• Contradict to v.d = u.d + w(u,v)
49

No-path property

• If (s,v) = ∞, then v.d = ∞ always

• Proof: v.d ≥ (s,v) = ∞  v.d = ∞

50

Convergence property

51

When the “if” condition is true, v.d = u.d + w(u, v)
When the “if” condition is false, v.d ≤ u.d + w(u, v)

Path relaxation property

52

Bellman-Ford algorithm

BellmanFord(G, w, s)

INIT-SINGLE-SOURCE(G, s)

for i=1 to |G.V|-1

for each edge (u,v)  G.E

Relax(u, v, w);

for each edge (u,v)  G.E

if (v.d > u.d + w(u,v))

return “no solution”;

Relax(u,v,w): if (v.d > u.d + w(u,v))

v.d = u.d + w(u,v)

Relaxation:

Make |V|-1 passes,

relaxing each edge

Test for solution

Under what condition

do we get a solution?

53

//Allows negative-weight edges

Running time

• Initialization: Θ(V)

• Line 2-4 : Θ(E) * |V|-1 passes

• Line 5-7 : O(E)

• O(VE)

54

Dijkstra’s Algorithm

• Assumes no negative-weight edges.

• Maintains a vertex set S whose shortest path from s has been

determined.

• Repeatedly selects u in V–S with minimum Shortest Path estimate

(greedy choice).

• Store V–S in priority queue Q. DIJKSTRA(G, w, s)

Initialize-SINGLE-SOURCE(G, s);

S = ;

Q = G.V;

while Q  

u = Extract-Min(Q);

S = S  {u};

for each v  G.Adj[u]

Relax(u, v, w)

55

Dijkstra’s Running Time

• Extract-Min executed |V| time

• Decrease-Key executed |E| time

• Time = |V| TExtract-Min + |E| TDecrease-Key

• Time = O(VlgV) + O (ElgV) = O(ElgV)

11/28/2016 56

Dynamic Programming (DP)

• Like divide-and-conquer, solve problem by combining
the solutions to sub-problems.

• Divide-and-conquer vs. DP:

– divide-and-conquer: Independent sub-problems

• solve sub-problems independently and recursively, ( so
same sub-problems solved repeatedly)

– DP: Sub-problems are dependent

• sub-problems share sub-sub-problems

• every sub-problem is solved just once

• solutions to sub-problems are stored in a table and used
for solving higher level sub-problems.

73

Overview of DP

• Not a specific algorithm, but a technique (like
divide-and-conquer).

• Doesn’t really refer to computer programming

• Application domain of DP

– Optimization problem: find a solution with the
optimal (maximum or minimum) value

74

Matrix-chain multiplication problem

• Given a chain A1, A2,…, An of n matrices

– where for i = 1,…, n, matrix Ai has dimension pi-1  pi

– fully parenthesize the product A1A2An in a way that
minimizes the number of scalar multiplications.

• What is the minimum number of multiplications
required to compute A1· A2 ·… · An?

• What order of matrix multiplications achieves this
minimum? This is our goal !

75

Step 1: Find the structure of an optimal
parenthesization

• Finding the optimal substructure and using it to

construct an optimal solution to the problem based on

optimal solutions to subproblems.

• The key is to find k ; then, we can build the global

optimal solution

((A1A2Ak)(Ak+1Ak+2An))

Both must be Optimal for sub-chain

Then combine them for the original problem

76

Step 2: A recursive solution to define the cost of
an optimal solution

• Define m[i, j] = the minimum number of
multiplications needed to compute the matrix
Ai..j = Ai Ai+1Aj

• Goal: to compute m[1, n]

• Basis: m(i, i) = 0

– Single matrix, no computation

• Recursion: How to define m[i, j] recursively?

– ((AiA2Ak)(Ak+1Ak+2Aj))

77

Step2: Defining m[i,j] Recursively

• Consider all possible ways to split Ai through Aj
into two pieces: (Ai ·…· Ak)·(Ak+1 ·… · Aj)

• Compare the costs of all these splits:

– best case cost for computing the product of the
two pieces

– plus the cost of multiplying the two products

– Take the best one

– m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj }

11/28/2016 78

Identify Order for Solving Subproblems

• Solve the subproblems (i.e., fill in the table
entries) along the diagonal

11/28/2016 79

79

1 2 3 4 5

1 0

2 n/a 0

3 n/a n/a 0

4 n/a n/a n/a 0

5 n/a n/a n/a n/a 0

An example

11/28/2016 80

1 2 3 4

1 0 1200

2 n/a 0 400

3 n/a n/a 0 10000

4 n/a n/a n/a 0

m[1,2] = A1A2 : 30X1X40 = 1200,
m[2,3] = A2A3 : 1X40X10 = 400,
m[3,4] = A3A4: 40X10X25 = 10000

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

An example (cont’d)

11/28/2016 81

1 2 3 4

1 0 1200 700

2 n/a 0 400

3 n/a n/a 0 10000

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,3]: i = 1, j = 3, k = 1, 2

= min{ m[1,1]+m[2,3]+p0*p1*p3, m[1, 2]+m[3,3]+p0*p2*p3}

= min{0 + 400 + 30*1*10, 1200+0+30*40*10} = 700

m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj }

An example (cont’d)

11/28/2016 82

1 2 3 4

1 0 1200 700

2 n/a 0 400 650

3 n/a n/a 0 10000

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[2,4]: i = 2, j = 4, k = 2, 3

= min{ m[2,2]+m[3,4]+p1*p2*p4, m[2, 3]+m[4,4]+p1*p3*p4}

= min{0 + 10000 + 1*40*25, 400+0+1*10*25} = 650

m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj }

An example (cont’d)

83

1 2 3 4

1 0 1200 700 1400

2 n/a 0 400 650

3 n/a n/a 0 10000

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,4]: i = 1, j = 4, k = 1, 2, 3
= min{ m[1,1]+m[2,4]+p0*p1*p4, m[1,2]+m[3,4]+p0*p2*p4,

m[1,3]+m[4,4]+p0*p3*p4}

= min{0+650+30*1*25, 1200+10000+30*40*25, 700+0+30*10*25}
= 1400

m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj }

84

Step 3: Keeping Track of the Order

• We know the cost of the cheapest order, but

what is that cheapest order?

– Use another array s[]

– update it when computing the minimum cost in the

inner loop

• After m[] and s[] are done, we call a recursive

algorithm on s[] to print out the actual order

An example

11/28/2016 85

1 2 3 4

1 0 1

2 n/a 0 2

3 n/a n/a 0 3

4 n/a n/a n/a 0

m[1,2] = A1A2 : 30X1X40 = 1200, s[1,2] = 1

m[2,3] = A2A3 : 1X40X10 = 400, s[2,3] = 2

m[3,4] = A3A4: 40X10X25 = 10000, s[3,4] = 3

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

An example (cont’d)

11/28/2016 86

1 2 3 4

1 0 1 1

2 n/a 0 2

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,3]: i = 1, j = 3, k = 1, 2
= min{ m[1,1]+m[2,3]+p0*p1*p3, m[1, 2]+m[3,3]+p0*p2*p3}

= min{0 + 400 + 30*1*10, 1200+0+30*40*10} = 700
m[1,3] is the minimum value when k = 1, so s[1,3] = 1

An example (cont’d)

11/28/2016 87

1 2 3 4

1 0 1 1

2 n/a 0 2 3

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[2,4]: i = 2, j = 4, k = 2, 3
= min{ m[2,2]+m[3,4]+p1*p2*p4, m[2, 3]+m[4,4]+p1*p3*p4}

= min{0 + 10000 + 1*40*25, 400+0+1*10*25} = 650
m[2,4] is the minimum value when k = 3, so s[2,4] = 3

An example (cont’d)

88

1 2 3 4

1 0 1 1 1

2 n/a 0 2 3

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,4]: i = 1, j = 4, k = 1, 2, 3
= min{ m[1,1]+m[2,4]+p0*p1*p4, m[1,2]+m[3,4]+p0*p2*p4,

m[1,3]+m[4,4]+p0*p3*p4}

= min{0+650+30*1*25, 1200+10000+30*40*25, 700+0+30*10*25}
= 1400
m[1,4] is the minimum value when k = 1, so s[1,4] = 1

Step 4: Using S to Print Best Ordering
(cont’d)

89

1 2 3 4

1 0 1 1 1

2 n/a 0 2 3

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 A2 A3 A4

s[1,4] = 1 - > A1 (A2 A3 A4)

s[2,4] = 3 - > (A2 A3) A4

A1 (A2 A3 A4) -> A1 ((A2 A3) A4)

Step 3: Computing the optimal
costs

MATRIX-CHAIN-ORDER(p)
1 n = length[p] -1
2 Let m [1..n, 1..n] and s[1.. n-1, 2..n] be new tables
3 for i = 1 to n
4 m[i, i] = 0
5 for l = 2 to n
6 for i = 1 to (n - l + 1)
7 j = i + l - 1
8 m[i, j] = 

9 for k = i to (j - 1)
10 q = m[i, k] + m[k + 1, j] + pi-1pkpj

11 if q < m[i, j]
12 m[i, j] = q
13 s[i, j] = k
14 return m and s

Complexity: O(n3) Space: (n2)
90

91

Step 4: Using S to Print Best Ordering

Print-Optimal-PARENS (s, i, j)

if (i == j) then

print "A" + i //+ is string concatenation

else

print “(“

Print-Optimal-PARENS (s, i, s[i, j])

Print-Optimal-PARENS (s, s[i, j]+1, j)

Print ")"

 s[i,j] is the split position for AiAi+1…Aj  Ai…As[i,j] and
As[i,j]+1…Aj

 Call Print-Optimal-PARENS(s, 1, n)

16.3 Elements of dynamic
programming

• Optimal substructure
– a problem exhibits optimal substructure if an optimal solution to

the problem contains within its optimal solutions to
subproblems.

– Example: Matrix-multiplication problem

• Overlapping subproblems
– The space of subproblems is “small” in that a recursive

algorithm for the problem solves the same subproblems over
and over.

– Total number of distinct subproblems is typically polynomial in
input size

• Reconstructing an optimal solution

92

Optimal structure may not exist

• We cannot assume it when it is not there
• Consider the following two problems. in which we are given a

directed graph G =(V,E) and vertices u, v V

– P1: Unweighted shortest path (USP)

• Find a path from u to v consisting of the fewest edges.
Good for Dynamic programming.

– P2: Unweighted longest simple path (ULSP)

• A path is simple if all vertices in the path are distinct

• Find a simple path from u to v consisting of the most
edges. Not good for Dynamic programming.

93

Overlapping Subproblems
• Second ingredient: an optimization problem

must have for DP is that the space of
subproblems must be “small”, in a sense that

– A recursive algorithm solves the same
subproblems over and over, rather than
generating new subproblems.

– The total number of distinct subproblems is
polynomial in the input size

– DP algorithms use a table to store the solutions to
subproblems and look up the table in a constant
time

94

Overlapping Subproblems (Cont’d)

• In contrast, a problem for which a divide-and-
conquer approach is suitable when the
recursive steps always generate new problems
at each step of the recursion.

• Examples: Mergesort and Quicksort.

– Sorting on smaller and smaller arrays (each
recursion step work on a different subarray)

11/28/2016 95

96

A Recursive Algorithm for Matrix-Chain Multiplication

RECURSIVE-MATRIX-CHAIN(p,i,j), called with(p,1,n)

1. if (i ==j) then return 0

2. m[i,j] = 

3. for k= i to (j-1)

4. q = RECURSIVE-MATRIX-CHAIN(p,i,k)

+ RECURSIVE-MATRIX-CHAIN(p,k+1,j) + pi-1pkpj

5. if (q < m[i,j]) then m[i,j] = q

6. return m[i,j]

The running time of the algorithm is O(2n).

The recursion tree

for k= i to (j-1)

q = RECURSIVE-MATRIX-CHAIN(p,i,k)

+ RECURSIVE-MATRIX-CHAIN(p,k+1,j) + pi-1pkpj

11/28/2016 97

RECURSIVE-MATRIX-CHAIN(p,1,4)

i =1, j = 4, k = 1, 2, 3 (i to j-1)

needs to solve (1, k) (k+1, 4)

k = 1 - > (1, 1) (2, 4)

k = 2 - > (1, 2) (3, 4)

K = 3 -> (1, 3) (4, 4)

98

•

Recursion tree of RECURSIVE-MATRIX-
CHAIN(p,1,4)

 This divide-and-conquer recursive algorithm solves the
overlapping problems over and over.

 DP solves the same subproblems only once

 The computations in darker color are replaced by table loop
up in MEMOIZED-MATRIX-CHAIN(p,1,4).

 The divide-and-conquer is better for the problem which
generates brand-new problems at each step of recursion.

99

General idea of Memoization

• A variation of DP

• Keep the same efficiency as DP

• But in a top-down manner.

• Idea:

– When a subproblem is first encountered, its solution needs to
be solved, and then is stored in the corresponding entry of the
table.

– If the subproblem is encountered again in the future, just look
up the table to take the value.

100

Memoized Matrix Chain

LOOKUP-CHAIN(p,i,j)

1. if m[i,j]< then return m[i,j]

2. if (i ==j) then m[i,j] =0

3. else for k= i to j-1

4. q=LOOKUP-CHAIN(p,i,k)+

5. LOOKUP-CHAIN(p,k+1,j) + pi-1pkpj

6. if (q< m[i,j]) then m[i,j] = q

7. return m[i,j]

101

DP VS. Memoization

• MCM can be solved by DP or Memoized algorithm,
both in O(n3)

– Total (n2) subproblems, with O(n) for each.

• If all subproblems must be solved at least once, DP is
better by a constant factor due to no recursive
involvement as in memorized algorithm

• If some subproblems may not need to be solved,
Memoized algorithm may be more efficient

– since it only solve these subproblems which are definitely
required.

Longest Common Subsequence (LCS)

• DNA analysis to compare two DNA strings

• DNA string: a sequence of symbols A,C,G,T

– S =ACCGGTCGAGCTTCGAAT

• Subsequence of X is X with some symbols left out

– Z =CGTC is a subsequence of X =ACGCTAC

• Common subsequence Z of X and Y: a subsequence of X and also a

subsequence of Y

– Z =CGA is a common subsequence of X =ACGCTAC and Y =CTGACA

• Longest Common Subsequence (LCS): the longest one of common

subsequences

– Z' =CGCA is the LCS of the above X and Y

• LCS problem: given X = <x1, x2,…, xm> and Y = <y1, y2,…, yn>, find their LCS

102

LCS DP step 2: Recursive Solution

• What the theorem says:

– If xm== yn, find LCS of Xm-1 and Yn-1, then append xm

– If xm  yn, find (1) the LCS of Xm-1 and Yn and (2) the
LCS of Xm and Yn-1; then, take which one is longer

• Overlapping substructure:

– Both LCS of Xm-1 and Yn and LCS of Xm and Yn-1 will
need to solve LCS of Xm-1 and Yn-1 first

• c[i,j] is the length of LCS of Xi and Yj
c[i,j]= 0 if i = 0, or j = 0

c[i-1, j-1] + 1 if i, j >0 and xi = yj

max{ c[i-1,j], c[i,j-1] } if i, j >0 and xi  yj

103

LCS DP step 3: Computing the Length of LCS

• c[0..m, 0..n], where c[i,j] is defined as above.

– c[m,n] is the answer (length of LCS)

• b[1..m, 1..n], where b[i,j] points to the table
entry corresponding to the optimal subproblem
solution chosen when computing c[i,j].

– From b[m, n] backward to find the LCS.

104

0 if i=0, or j=0

c[i,j]= c[i-1, j-1] + 1 if i, j >0 and xi = yj

max{ c[i-1,j], c[i,j-1] } if i, j >0 and xi  yj

LCS DP Algorithm

105

LCS Example (0)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

X = ABCB; m = |X| = 4
Y = BDCAB; n = |Y| = 5
Allocate array c[5,6]

ABCB

BDCAB

106

LCS Example (1)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

for i = 1 to m c[i,0] = 0
for j = 1 to n c[0,j] = 0

ABCB

BDCAB

107

j 0 1 2 3 4 5

LCS Example (2)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0

ABCB

BDCAB

108

LCS Example (3)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0

ABCB

BDCAB

109

j 0 1 2 3 4 5

LCS Example (4)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0 1

ABCB

BDCAB

110

LCS Example (5)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

000 1 1

ABCB

BDCAB

111

j 0 1 2 3 4 5

LCS Example (6)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 10 1

1

ABCB

BDCAB

112

LCS Example (7)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 1 11

ABCB

BDCAB

113

LCS Example (8)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 1 1 1 2

ABCB

BDCAB

114

LCS Example (10)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

21 1 11

1 1

ABCB

BDCAB

115

LCS Example (11)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 11

1 1 2

ABCB

BDCAB

116

LCS Example (12)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

ABCB

BDCAB

117

j 0 1 2 3 4 5

LCS Example (13)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

1

ABCB

BDCAB

118

LCS Example (14)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

1 1 2 2

ABCB

BDCAB

119

LCS Example (15)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3

ABCB

BDCAB

120

121

15.8

Greedy Algorithms
• We have learned two design techniques

– Divide-and-conquer

– Dynamic Programming

• Now, the third  Greedy Algorithms

– Optimization often goes through some choices

– Make local best choices  hope to achieve global
optimization

– Many times, this works; Other times, does NOT!

• Minimum spanning tree algorithms

– We must carefully examine if we can apply this
method 122

An activity-selection problem

• Activity set S = {a1, a2, ..., an}

• n activities wish to use a single resource

• Each activity ai has a start time si and a finish time

fi, where 0  si < fi < 

• If selected, activity ai take place during the half-open

time interval [si, fi)

• Activities ai and aj are compatible if the intervals [si,

fi) and [sj, fj) do not overlap

– ai and aj are compatible if si  fj or sj  fi

123

The greedy choice
• Intuition: Choose an activity that leaves the resource

available for as many other activities as possible

• It must finish as early as possible: greedy

• Let Sk ={ai S : si >= fk} be the set of activities that

start after activity ak finishes

• If we make the greedy choice of activity a1 (i.e., a1 is

the first activity to finish), then S1 remains as the

only subproblem to solve.
• a1 + S1 , if S1 is the optimal solution for others  a1 must be in

the optimal solution

• Is this correct?

11/28/2016 124

Optimal substructure
• Si j is the subset of activities that can

– start after activity ai finishes

– and finish before activity aj starts

– Si j = { ak S: fi  sk < fk  sj }

– f0= 0 and sn+1 = . Then S = S0,n+1, and the ranges for i
and j are given by 0  i, j  n+1

• Define Aij as the maximum set in Sij

– Selecting ak in the optimal solutions generates two
subproblems

– Aij = Aik  {ak}  Akj

– |Aij|= |Aik| +1+ |Akj|

125

Converting a dynamic-programming solution to
a greedy solution

• Theorem 16.1 Consider any nonempty subproblem Sk, and let
am be the activity in Sk with the earliest finish time: fm = min

{ fx : ax  Sk}. Then am is used in some maximum-size subset of
mutually compatible activities of Sk

• Let Ak be the maximum-size subset of mutually
compatible activities in Sk

• Let aj be the activity in Ak with the earliest finish time

• If aj == am , we are done.

• Otherwise, A’k = Ak - {aj}  {am}

• We have new Ak with am

126

An iterative greedy algorithm
GREEDY-ACTIVITY-SELECTOR(s, f)
1 n = s.length

2 A = {a1}

3 k = 1

4 for m = 2 to n

5 if sm  fk

6 then A = A  {am}

7 k = m

8 return A

127

Ingredients of Greedy ALs

• Greedy-choice property: A global optimal
solution can be achieved by making a local
optimal choice.

– Without considering results of subproblems

• Optimal substructure: An optimal solution to
the problem within its optimal solution to
subproblem

128

The End

11/28/2016 129

